Have you validated your turbine upgrade plan?

2 Min Read

10 Dec 2018

As wind turbine design advances and existing fleets age, there is a case to be made for implementing system upgrades, but how do you know if it is worth the initial investment?

VANCOUVER, BC: Clir Renewables has released a new software feature to support the validation of turbine upgrades. Whether it is a software or hardware upgrade validation needn’t only be theoretical.

As the design of wind turbines advances reviewing the performance of the existing fleet can highlight areas where improvements can be made by upgrading the current hardware or software. Original Equipment Manufacturers (OEMs) and third-party companies are regularly offering owners ways to improve the performance of current turbines. These upgrades can be physical changes to the turbine like aerodynamic enhancements such as vortex generators, gurney flap or leading edge tape. Software-based changes could include new blade pitching algorithms, improved yaw control or increased cut-out and re cut-in wind speeds. Loads on turbine components may be increased, depending on the nature of the upgrade. The benefit of increased Annual Energy Production (AEP) should be carefully weighed against the implications of increased loading.

As owners know, no two sites are the same so how can they be sure investing in these upgrades will increase AEP? By validating the impact of the upgrade against the claimed gain by the manufacturer. However, independent validation studies on specific upgrade options are scarce, or not applicable to every site. Without independent validation, owners may never know the true benefit of making the upgrade.

Independent validation is possible by implementing the upgrade on a small percentage of turbines on site, assessing the impact on AEP and evaluating it against the investment required to install the upgrade across the whole farm. Clir software has the most advanced data model in the industry which makes this validation easier to complete than via traditional methods. By integrating SCADA, CMS, meteorological, geospatial data and much more to build predictive models of turbine behaviour, Clir software can identify changes in a turbine’s performance and benchmark it against numerous models. An assessment of the cost-benefit of the potential upgrade is then performed before full implementation.

Additionally, Clir Renewables has extensive knowledge of upgrades offered by OEMs. The data science team has conducted in-depth reviews of documentation provided by OEMs as well as contributed to conversations about upgrade implementation at many wind farm sites. Clir Renewables provides independent and impartial information based on site-specific data and OEM documents.

Andrew Brunskill, Data Scientist at Clir Renewables, said “There are few simple answers to turbine upgrades as comparing two wind farm sites to each other is like comparing an apple to an orange.

“The impact of each upgrade on energy production and turbine loads depends on the local wind climate and the specific turbine model in use at the site, among other factors, that’s why independent validation is important,” Brunskill continued.

By using Clir software to validate upgrades owners avoid expensive consultancy fees and have the information to negotiate confidently with the OEM or third-party company on the cost.


About Andrew Brunskill: Andrew is a PEng from a major global consultancy and has taken on a wide variety of roles during his career including project engineer, energy analyst, modeling specialist, and project manager. In recent times he has undertaken performance analytics across Vestas, Siemens, GE, Suzlon, and Siemens wind turbine technology.